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Abstract

A simplified model for gas—solid reactions in fluidised bed (FB) is proposed. Such models already exist for catalytic gas—solid reactions (CGSRs),
providing general description of the system in terms of main governing parameters. Expansion of this approach to non-catalytic gas—solid reactions
(NCGSRs) is difficult, because the solid reactant takes part in the reaction. Therefore, FB reactor models for NCGSR are usually devised only
for specific cases, and a general analysis has not been presented up to date. The present model allows analysis of different types of NCGSR in a
generalised way, handling catalytic reactions as a particular, simpler, case. It is shown that the reactor behaviour can be described by three governing
dimensionless parameters. Two additional parameters, quantifying the importance of diffusion effects in single particles are also identified, and
their impact on reactor behaviour is analysed. Possible simplifications are explored. Model limitations, that is, assumption of isothermal bed and
particle and the occurrence of only one reaction, are discussed. Examples are outlined to show the applicability of the method.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many important processes, in which non-catalytic gas—solid
reactions are involved, take place in fluidised bed. Typical
applications are found in metallurgical and thermochemical
conversion processes. Examples of metallurgical importance
comprise the reduction of metals oxides (iron, nickel, etc.), roast-
ing of ores of heavy metals in sulphide form, such as copper,
nickel, zinc and lead. Thermochemical examples are combus-
tion, gasification and pyrolysis of coal and biomass, including
sulphur capture (in-bed desulphurisation) using mineral rocks,
such as dolomite or limestone. To this class of processes belong
also thermal decomposition reactions, fluorination of uranium
and plutonium compounds, some granulation processes, etc. The
optimisation and scale-up of these processes benefit greatly from
modelling of the system. Detailed description of physical and

Abbreviations: BFB, bubbling fluidised bed; CGSR, catalytic gas solid reac-
tion; FB, fluidised bed; FDE, free of diffusion effects; NCGSR, non-catalytic gas
solid reaction; SIM, sharp interface model; UCM, uniform conversion model.

* Corresponding author. Tel.: +34 95 4487223; fax: +34 95 4461775.

E-mail address: agomezbarea@esi.us.es (A. Gomez-Barea).

1385-8947/$ — see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cej.2007.12.014

chemical processes occurring inside an FB for NCGSR is, how-
ever, a difficult task. Simple methods providing approximate
solutions for first estimates are quite useful. For instance, an
approximate description of gas—solid reactions in FB can be suf-
ficient for selection of mode of gas—solid contact, preliminary
design, and optimal operating conditions by sensitivity analysis.
Such models already exist for CGSR in FB [1-4]. In this type of
system, the solids are unchanged as reaction proceeds and bed
removal is not usually undertaken during steady-state operation
if the catalyst is not poisoned. In contrast, simple models have not
been developed for NCGSR due to their complexity compared
to their catalytic counterparts. Although many FB reactor mod-
els have been published, they are devised for specific reactions
only. A general framework for simplified treatment of NCGSR
is not yet available.

The performance of gas—solid reactions in FB has been
described by several approaches. Early models treated the FB
reactor as if the gas and solids were mixed, avoiding the multi-
phase nature of the bed. These ‘single-phase’ models assumed
that the reactor performance was determined by the residence
time of the gas. The breakthrough caused by the introduction
of the two-phase theory proposed in the early 1950s, allowed
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Nomenclature

A Non-reactive component in the solids (ash or
equivalent)

At bed cross section (m?)

Bi Biot number

c gas concentration (mol m?)

C reactive component in the solids

De effective diffusivity of the reactant solid particle
(m?s~1h

Dy bed diameter (m)

Day, Damkohler number at particle scale, defined in
Eq. (30)

Dagr Damkohler number at reactor scale, defined in Eq.
(22)

Dag Damkohler number for the solid reactant, defined
in Eq. (40)

f function

f1(xc0, &) function defined in Eq. (45)
fo(xc0, &) function defined in Eq. (48)

F(xc)
Fi(xc)
Fo, F
8
8(xc)
G

H
k

Ieb

(=R

R(xc)
Re,

function expressing the dependence of dx./dt on
x. for any n,

function expressing the dependence of dx./dt on
xc when np =1 (kinetic regime)

inlet and outlet flowrate of solids (kg s~h
acceleration of gravity (ms~2)

function expressing the change of effective diffu-
sivity with x¢

gas reactant

height of the vessel containing the bed (m)
nth-order kinetic coefficient in the kinetics
((—r)=kc") ((kgmolm—3)! =" s~1)

coefficient of interchange between bubble and
emulsion (s~ 1)

external mass-transfer coefficient (ms~!)

kinetic coefficient accounting for gas concentra-
tion and temperature (s™h

equivalent size of solid particle (m)

bed height (m)

Thiele module, function of conversion
molecular mass of solid reactant (kg kgmol 1)
order of reaction

concentration efficiency, defined in Eq. (23)
number of transfer units, defined in Eq. (24)
distribution of conversion in the bed (mass basis)
distribution of conversion in the inlet and outlet
streams (mass basis)

pressure drop across the bed (Pa)

intrinsic reaction rate per unit of particle volume
(=) =ke™) (kgmolm—3 s~ 1)

overall rate of reaction in the bed (kgs™!)
observed reaction rate per unit of particle volume
(kgmol m—3s71)

reactivity of solid reactant (s~ 1)

particle Reynolds number

dummy variable of integration

Sh Sherwood number

t time ()

Ty bed temperature (K)

u gas velocity (ms™!)

Vp particle volume (m3)

Wp mass of A and C in the bed (wp = wa + w¢) (kg)

We mass of solid reactant (C) in the bed (kg)

WTh total mass of the bed (wtp = Wp + Winert) (KL)

Xc conversion of solid reactant in a particle

Xeb average conversion of solids in the bed

X, gas conversion

Yeo mass fraction of solid reactant in the feed

Yep mass fraction of solid reactant in the bed

z axial coordinate

Greek symbols

o dimensionless parameter at reactor level, defined
in Eq. (52)

B dimensionless excess of flow, defined in Eq. (25)

8 kinetic parameter in Eq. (60), also Dirac’s delta
function

£ porosity

b bubble fraction ((m> bubbles) (m~> bed))

Ne external effectiveness factor

ni internal effectiveness factor

Np particle effectiveness factor

Nph interphase effectiveness factor

K parameter defined in Eq. (59)
A dimensionless parameter defined in Eq. (41)
v stoichiometric factor of the reaction

& kinetic parameter (see Table 1)

0 density of solid (kgm™3)

TR solid residence time (s)

O(x.) function defined in Eq. (39)

Subscripts

b bubble, bed, average in the bed
c reactive component in the particle
crit critical

e emulsion

i intraparticle

in inlet

out outlet

P particle

r reaction

S surface

0 initial, superficial

consideration of the multiphase nature of the FB by means of
a simplified description of two phases, in which the solids and
the gas were distributed in the bed. Thereafter the concept of
‘contact time distribution’ was recognized as a key factor for
taking into account the time of gas contact with the solid reac-
tant [2]. May [1], Orcutt et al. [3] and Davidson and Harrison
[4] used the two-phase theory of fluidisation for calculation of
gas conversion in various isothermal FB catalytic gas reactors.
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Table 1
Main models applied to NCGSR kinetics
Name Abbreviation Fi(xc) OX) Reference
Volumetric model UCM 1—xc —In(1 —x.) [22]
Grain model; or sharp interface model GM (SIM) (1 —x)*? 3(1—(1—x)') [23,24]
Random pore model RPM (1 —x)(1 —&In(1 — x)) 2/6)(1 — £In(1 — x.))? [25]
Simons model SM (1 — x)(xe +E(1 — x )2 2arctgh((1 — &)x. +£)12 [26]
Johnson model M (1 — xo)?/3 b NAEF [27]
Dutta model DM [1 £ 100x5152 exp(—£axe)](1 — xc) NAEF [20]
Gardner model GM (1 — xc)e 5% NAEF [28]
Chornet model CM XL = x¢) 2arctgh(/xc) [29]
Modified volumetric model MVM 1281 — xo)[—In(1 — xc)] NAEF [30]
Traditional model ™ (1 —x)f E-D'1=x'4-1] [31]
n

Polynomial model PM Zé}ixc(l —x) NAEF (32]

i=1

The third column presents F;(x.), the function modelling the behaviour defined in Eq. (1). The fourth column is the function defined in Eq. (39). &; are kinetic model

parameters; NAEF: not analytical expression found.

Extensive reviews have been published on modelling of FB reac-
tors [2,5-7], where the analyses were performed with different
degree of sophistication.

Several publications have surveyed the ability of FB reactor
models in a variety of gas—solid reactions [5,8—11]. Generally,
solutions of two-phase models based on isothermal catalytic
systems have been presented in terms of two main dimension-
less groups: one representing the dimensionless reaction rate
and the other accounting for the interphase mass-transfer resis-
tance [2,5-7]. Analytical solutions have been reported for simple
kinetic schemes, such as first-, second-, etc., order kinetic (see for
instance Table 11.5 in [2]). Solutions for more complex kinetics
have been presented for catalytic reactions, based on conven-
tional two-phase models and Kunii-Levenspiel’s model [12,13].
Expansion to include thermal effects has also been undertaken
in catalytic systems for simple reactions [7], but this extension
causes difficulties because of the complexity of the treatment
even for the simplest reaction scheme.

In FB catalytic systems the solids are unchanged as reaction
proceeds (if no catalyst poisoning occurs) and the solids are only
considered as a sink in the evaluation of the reaction rate. The
reaction rate on the catalyst particle can be subjected to diffusion
effects, but these do not change with time. For NCGSR in an FB,
in contrast, the solid reactant is constantly consumed and solids
make-up is required for steady-state operation. At any instant,
the reactor contains particles that have spent different lengths of
time inside the bed, and, thus, they have a wide burn-off distri-
bution or particle age. During the course of reaction, the solid
reactant contained in the particles is gradually affected, and the
density and size of the particles change depending on the oper-
ating conditions in the bed. This behaviour can change from one
particle-size fraction to another depending on the concentration
of the solid reactant within the particles. A general description
of the bed should account for variation in size and density of the
reacting particles [14,15]. In addition to the aforementioned two
main dimensionless groups appearing in the isothermal FB cat-
alytic reactor, a third parameter taking into account the relative
amounts of gas and solid reactants fed to the reactor is required
to describe the NCGSR in an FB [9,10].

The abbreviation NCGSR represents heterogeneous reac-
tions where the active solid participates in the reaction, in
contrast to catalytic systems, which, if not poisoned, remain
unchanged during reaction. Some catalytic effects may exist any-
way caused by the inert material, for instance, minerals in coal or
biomass particles in thermochemical processes. However, such
effects are included in the gas—solid kinetics (expression dx./dz,
see Eq. (1)) determined in the laboratory, in this way being an
input to the model presented.

From this discussion it is clear that an FB reactor model
for NCGSR should consider: (1) continuous bed removal; (2)
variation of physical properties and reaction rate of single par-
ticles as reaction proceeds; (3) the distribution of conversion
of the particles in the bed; (4) varying diffusion film and intra-
particle mass-transfer limitations with burn-off. As a result, FB
reactor models for catalytic reactions are not generally valid
for NCGSR. The need for all these (and in some cases other)
considerations is the reason why dedicated models have been
developed for NCGSR in FB. Many reactor models exist, but
they are devised solely for specific reactions. The reviews of
Yates [16], Doraiswamy and Sharma [17], and Grace [2] survey
the most popular models developed until the end of 1980s.

In the present work, a method is developed for the solution
of NCGSR in an isothermal FB, allowing analysis of general
NCGSR by a common procedure. In this way, the simple mod-
elling approach already existing for catalytic systems is extended
to non-catalytic systems. The treatment considers isothermal
conditions both in the phases and within the reacting particles,
which imposes some limitations to the application of the method.
Furthermore, some NCGSRs imply consideration of various het-
erogeneous reactions, and this could limit the method further.
This and other limitations are dealt with at the end of this work
where extension of the method and possibilities to overcome
limitations are discussed.

2. Problem description and definitions

Fig. 1 illustrates the problem dealt with. The gas reactant G
is introduced into the FB reactor as part of the fluidisation agent
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(a) PROCESSES IN A PARTICLE

FB REACTOR MODEL

Fig. 1. (a) Model concept showing the hypothesis assumed in this work: the right-hand drawing of (a) presents the basis of the two-phase model developed showing
the resistance to mass transfer between bubble and emulsion. Left-hand drawing of (a) is a zoom of the processes occurring in a reacting particle (with flat geometry
for simplification), including the main resistances to mass transport: in the film (external mass resistance) and within the solid particle (reaction and intraparticle
resistances). (b) Process scheme showing the contact pattern in an FB and population balance definitions.

with a concentration cj,. It passes through the bed as bubbles
with a concentration cp, and through the well-mixed emulsion
phase with a concentration c.. The G species is transferred from
bubble to emulsion to reach the reacting sites within the react-
ing particles, where the reaction is C(s) + vG(g) — products.
The resistances of transport and reaction and the main assump-
tions that have been made to develop the mathematical model
are shown in Fig. la. The resistances are: bubble to emulsion
resistance, external film resistance around the solid particle (the
resistance within the emulsion phase is assumed to be concen-
trated around the particles), and intraparticle resistance. The inlet
and outlet streams of the solids including reactant C are shown
in Fig. 1b, where the bed inventory, wy, is also specified. The
reactor contains particles that have spent different times inside
the bed and, thus, have a wide distribution of conversion, py(x).
This latter is considered equal to the distribution of the outflow
stream, p1(x.), since perfect mixing of solid is assumed.

We assume that a solid particle S, is made up of active
solid reactant material C and non-reactive solid material A,
ash or similar. In addition, there could be inert material, fed
to the system for various reasons (for instance, sand to keep
the bed constant). The conversion of the solid reactant C con-
tained in S at any instant, x., is defined as the relative difference
between the initial amount of C and the instantaneous one,
Xxe = (Yeo(to) — Yo (D)) Yeo(tp). Ye is the mass fraction of solid reac-
tant C in a given mass of material: Yo (kg C/kg S at xc0), and
Ye(xo) (kg C/kg S at x;). Following these definitions (1 — Ycoxc)
is the mass fraction of S in a stream of conversion x. and
Yeo/(1 — Yeoxc) is kgC at xc0/kg S at x.. Note the difference
between Y. and x: Y. is an integral measure of the amount of C
contained in a stream of material (or in the bed) containing vari-
ous compounds (C + A +inert), whereas x. is a mark of the state
of conversion of an individual particle refereed to their initial
state of conversion, when it was fed to the reactor, xco. Specifi-
cation of x. for a stream (or for the bed) has no meaning because,

in the general case, in a given stream there will be particles with

different degrees of conversion. However, the average of x. in a

stream (or in the bed) is uniquely related with Y. (see Eq. (9)).
The rate of conversion of a single particle due to chemical

reaction, under chemical reaction control, may be expressed as

[18,19]:

dxc

dt

K is the kinetic coefficient, accounting for the concentration of
the gaseous reactant and temperature in the emulsion, where the
reaction takes place. The function F;(x.) expresses the depen-
dence of the conversion rate on x.. K, is evaluated for the
conditions in the emulsion, where the reaction takes place. The
rate of reaction can also be formulated as [20,21]:

M. k(xc)Cé'
Pco v

= Kr,eFi(xc) (1)

dx _

" @

k is the kinetic coefficient based on particle volume, and relates
the rate of reaction per unit of volume with the gas reactant con-
centration, i.e. (—r) = kc(J. This definition is typical in GSCR
where k is a constant for isothermal conditions. In contrast, for
isothermal NCGSR k& depends on conversion. With the initial
time as a reference, Fi(x. =xc0) =1 and k(x;) =koFi(xc), so for
Xc > Xc0 one obtains from Egs. (1) and (2):

Mc kocg’

Kr,e -
POV

3

When diffusion plays a role the conversion rate of a particle
is written as

dx
ditc = np(xc)Fi(xc)Kr,e

where the particle’s effectiveness factor np(xc) accounts for the
diffusion resistance at particle scale (the external gas film and

“
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the intraparticle resistance). Some authors have used expressions
like Eq. (4) to estimate the role of internal diffusion [20,21].
np(xc) is defined as the ratio of the actual conversion rate of a
particle to the rate free of diffusion effects (FDE):

dx./dt dx./dt

- )
dx./dt|FpE Fi(Xc)Kr,e

np(xe) =

Formally, the F;(x.) function should be free of diffusion limita-
tions, i.e. it should be determined in the kinetically controlled
regime. In this work F;(x.) is the ratio of available solid surface
at a certain conversion x. to that of a reference case, x.g. Table 1
provides some accepted models of F;(x.) used for NCGSR reac-
tions.
From Eq. (4) a function can be defined: F(xc) = Fi(xc)np(xe),
yielding
dxc K F
? = RKye (xc) (6)
The overall mass rate of reaction r.p in the entire bed is
computed by

1
o= [ wnREIPys)d )
Xc0

where wy, is the mass of S (A +C) in the bed and py(x.) is the
distribution of conversion in the bed (mass basis). The integrand
wp R(xc) pv(xc) is the rate of reaction of solid particles in the
bed having a conversion between x. and x. +dx.. R(x;) is the
reactivity expressed as kg C reacted/kg S at x. and time:

Yoo % i YCOKr,e

R e — =
) = Ty e a1 Yoo,

F(xc) (3)
The solids can accumulate in the bed, depending on the net

balance between the rates of feed, conversion, and removal of

solids. A solid particle is fed into the reactor with an initial

conversion xo and it is removed from the bed with a conversion,

x¢p (average conversion of perfectly mixed particles in the bed).

The fraction of C in the bed, Y. (kg C/kg S in the bed) is [9]:

Yeo(1 — xc,b)

Yep = ——m— 9
c,b 1 Ycoxc,b ( )

Solving for x.p gives

Xep = Yeo—Yep (10)
Yeo(1 - Y, c,b)

The bed material consists of the solid reactant C and the
material remaining after completing the reaction A, ash or any
other type of inert component originating from the feed stream.
The mass of solid reactant C in the bed is the product of wy, and
Y. obtained from Eq. (9):

we = wpYep (11

If inert material is fed to the bed, or if a batch of such material
is used to fill the bed initially (for instance sand as initial buffer
in biomass thermochemical conversion processes), an additional
mass balance for this material has to be formulated. The compo-
sition of the bed at a given time depends on the way of operation.

A detailed case by case analysis is out of the scope of the present
treatment. In this work, at any instant, there are three amounts
of materials in the bed: wc, wa, and Winert. Wp is the sum of w,
and wa (wp = we + wa), whereas wry includes also the inert
(wTh = we + WA + Winert), Which is known by, for instance,
pressure measurements (wtp = A Py(AT/g)). Winert, if it exists,
has to be calculated from an additional mass balance. The way
to include this additional balance in parallel to the main problem
is outlined in Section 4.3.

3. Development of the model
3.1. Modelling approach

A realistic representation of the bed should account for the
variation in size and density of the reacting material, as in the
treatments by Chen and Saxena [14] and Overturf [15]. The
model proposed aims at simplifying this general treatment. The
method is based on two main steps:

Step 1: Application of a fluid-dynamic model to a cat-
alytic system. This model is derived without considering the
non-catalytic nature of the reaction and the actual burn-off
distribution in the bed.

Step 2: Allowance is made for the deviation from the catalytic
case, considering the extent of conversion in the FB by a solids
population balance, which is solved by a kinetic model for a
single particle.

3.2. FB reactor modelling for CGSR

With the assumptions discussed in Fig. 1a molar balances for
the gas in the bubble and emulsion phases lead to

Bugdcy = kpep(ce — cp) dz (12)
Lg Vre b
(1 = Buo(cin — ce) = kpep(ce — cp)dz + (13)
0 MCAT
The boundary conditions are
cb(z = 0) = cp,in = Cin (14)
Cout = Pev(z = Lg) + (1 — B)ee (15)

The gas conversion X, and the interphase effectiveness factor
nph are defined by

n
Nph = (ce) and X, =1- cou[, (16)

Cin Cin

Integrating Egs. (12) and (13), taking Eq. (16) into account,
gives [33]:
(1 = Xo/Ny)" Ny
Xo/Na  Dagr

a7

where the parameters Dar and N, are defined in Eqgs. (22) and
(23). Combining Eqgs. (16) and (17):

Xg = (1= n}")Ny (18)
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X
Dag = —£ (19)
Tph

These expressions can be combined to give

Dag Xo/Ny

= 20
No (1= Xg/Ny)" 20
1
(=" Dag on
Nph B N,

Egs. (18)—(21) provide two independent relationships for four
quantities: Dar, Ny, Xg and npn. Dag is the Damkdhler number at
reactor scale, expressing the relative importance of gas residence
time and reaction time:

n—1

kcy,
22
uo/Ly (22)

Dagr = npDag iy with  Dag jn =
Dag is known for a CGSR if diffusion effects are absent, i.e.
np=1 (kinetic regime) because Dag;n is known. Here, we
assume that the bed height Ly is known or can be determined
by the pressure drop across the bed. In contrast, Dag j, is not
known for a NCGSR even when the particles are in the kinetic
regime, because the concentration of the reacting particles in the
bed is unknown. We shall deal with this matter below. N, is the
concentration efficiency in the one-dimensional bed, defined by

o — _NTU
Np= o=t 1 gexp () (23)
Cin — Ce :3

NTU is the number of transfer units and 8 is the dimensionless
excess gas flow:

NTU = koey (24)
uo/L¢

B = Uy — Umf (25)
uo

The expression for 8 assumes that all gas in excess of min-
imum fluidisation velocity flows through the bed in the form
of bubbles. This rests on the “two-phase theory” of fluidisa-
tion [12]. There is evidence, however, that there is a short-cut
flow through the bubbles, especially in larger particle systems.
This has been quantified in several models and correlations and
depends on the groups of up/umf, up/ums and gp. Analyses of the
throughflow in various two-phase models have been reviewed in
[4,5,12,34]. The impact of throughflow on the prediction of gas
conversion in simple and dynamic two-phase flow models was
assessed by Mostoufi et al. [11]. A correction for throughflow
could be needed when using § in Eq. (23), especially for larger
particle systems. Sensitivity studies employing the final reactor
model are helpful in identifying the need for further refinement.
In the cases outlined in this work, the results have been found
insensitive to this parameter.

We conclude that the interphase effectiveness factor npp is
only a function of the group Na/Dagr, and X; is a function of
the two groups N, and N,/Dagr. The relationships needed to
calculate NTU and g and related parameters depend on the flow
pattern and the particle system under consideration. Examples of

formulae useful for bubbling fluidisation in lab-scale FB can be
found in Table 1 [33]. Further information for other fluidisation
systems and scales is found in [12,34].

For reaction orders of 1, 1/2 and 2 explicit solutions for
are found in the literature [2,35]. In a general case, for nth-
order kinetics, explicit solutions for 7,p as a function of Dar
and N,, can be obtained by Frank-Kamenetskii’s approximation
(see Appendix A) applied to Eq. (21):

({1 = n)(Dag/N)}" + 11" + n(Dag/Ny)) "

with 0 <n <1
Tph = Un Uny=" (26)
20[2n)"" — 1 + (1 + 2n(Dag/Ny)) "]

with 1 <n <27

Once nph is known, the gas conversion is determined by Eq.
(18) or (19).

3.3. Modelling of particle kinetics in CGSR

To calculate the particle effectiveness factor i, in the catalytic
case, we assume that 1, does not depend on x. or, more useful
for the later expansion to NCGSR, we consider that x; = xco. The
estimation of 7, is achieved through an internal and an external
effectiveness factor, n; and 7., so that 1, =nine. The detailed
derivation of the equations needed and the way to obtain the
necessary information from experiments have been published in
[33]. The effectiveness factors for isothermal CGSR are written
as

ne = (C) @7
Ce
_ (—R) _ 1

= ke" dV, 28
kel Vpkc? /Vp < (28)

S
Under pseudo-steady-state conditions, the isothermal mass-
transfer problem for nth-order kinetics can be expressed as

ne=(1— Dapenp)n =(- Daperline)n (29)

where a second Damkdhler number, Day., represents the ratio
of the maximum diffusion rate (when cs = c¢) to the reaction rate
controlled by external diffusion (when cs ~ 0):
kLequc”
Dape = Khequle (30)
kgce

Taking into account Egs. (A.1), Eq. (29) can be approximately

solved for 7:

O<n<l1

(€29}

2n[@m)"™ — 14 (1 + 2nDapen)™ +117", 1 <n <27

—n -1

_ { [({(1 = M) Dapeni}'™ + 1" + nDapemi]

By solving the reaction-diffusion problem for a reactant particle,
an approximate solution for »; is often used:

_ tanh(Mj)

_ 2
n M. (32)
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M being a conversion-dependent Thiele module:

| ken-1112
n+ 1kt ] (33)

o= Lo TG,

It is well know that Eq. (32) is strictly valid for first-order
kinetics in a slab, but nevertheless, the generalised Thiele mod-
ule defined in Eq. (33) makes the use of Eq. (32) a reasonable
approximation for any geometry (characterised by Lequ) and
reaction order, n [20,24,31,33,34].

In Egs. (31) and (33) M; and Day. are evaluated for surface
(index ‘s’) and emulsion (index ‘e’) conditions, respectively. The
gas concentrations in the emulsion and at the surface differ from
the inlet concentration, so they are not a priori known. Therefore
Mg and Day,e should be related to known quantities, that is, they
should be expressed as functions of quantities evaluated for gas
inlet conditions (index ‘in’). This is done by taking into account
Egs. (16) and (28), yielding

Dape = Dapin(nph)(n_l)/n (34)
M = Min(’]ph’?e)(n_l)/zn (35)

Here npn is calculated by Eq. (26), and 5. and n; by Egs. (31) and
(32) where Mg and Daye are calculated by Eqgs. (34) and (35).
There is a loop for npy and the scheme of solution is iterative.
From this treatment it is clear that the dependence of 7, is in the
form:

np = f(’?ph» Min’ Dapin’ n) (36)

The algorithm of solution and the graphical solution of this
system is presented below in Section 4. The extension to account
for the effect of solid conversion state is developed in Section
3.5.

3.4. FB reactor modelling for NCGSR

In the model developed above for CGSR Dag ;, was assumed
to be known, given by the batch of catalyst in the bed and the
properties of the catalyst. In NCGSR, on the other hand, Dagr
is unknown, because neither the amount of solid reactant nor its
distribution of conversion py,(x.) in the bed are known. Conse-
quently, a solids population balance should be formulated and
solved. The definition of Dagr for NCGSR is better given in the
following terms:

_ fvxc eV wp R(x¢) po(xc) dxc Feb

= 37
ugArcinMe/v

Dagr
ugAtcinMc/v

Fig. 1b shows the main aspects and the nomenclature used.
The main conditions were already discussed in Section 3.2. An
additional assumption is that all the fines are returned to the
reactor: there is no carryover, and all particles leave with the
exit ash discharge. Also, all particles are assumed to enter with
the same conversion xco. The treatment follows the procedure
developed by [36]. The present approach, however, expresses
the equations in extent of conversion instead of time or particle
size [37,10]. Following the nomenclature of Fig. 1a, a population

balance over the reactor yields the distribution of the conversion
of the solids (see Appendix B):

1 1 — Yeoxc —0O(xc)
= — 38
PR = Dy Flx) 1= Yeoreo [ x } G5
O(x.) being a function
Yo ds
Oxe) = / & (39)
7 S F®

Expressions for ®(x.), associated with well-known kinetic mod-
els are included in Table 1. The two dimensionless parameters
Dag and X in Eq. (38) are defined as

K;cw
Dag = re™b = K, etR (40
Fo
K K
3 = r,eWh _ r,eWh (41)
Fy Fo—rcp

Day is the Damkdhler number of the solid reactant, expressing
the ratio of residence time of solids Tr = wy/F( and reaction
time 1/K,. . Note that Dag ranges from O to 1 (the Dag =1 case is
when the particles are made up of C entirely remaining in the bed
justthe time they need to react completely). The relation between
Dag and 1 is obtained through the normalisation equation [36]:

1
/ po(s)ds =1 42)
Xc0

Eq. (42) is not satisfied, however, with the distribution calculated
by Eq. (38) because pp(x.) should include both particles hav-
ing solid reactant left (C + A) and particles completely reacted
that still remain in the bed (only consisting of A). In Eq.
(42) this second class of solids is not accounted for. Caram
and Amundson [9,10] showed that for an FB coal gasifier
(C =carbon + A = ash) an ash balance could solve this apparent
difficulty (equivalent to and replacing Eq. (42)). The following
treatment uses the same approach as that in [10]. An ash (A)
balance over the system yields

I —Yeoxeo _ Fo _ (Das\™'
1— Yeoxe b - F; o A

(43)

The C-concentration in the bed can be obtained by taking into
account all particles having a C-concentration in the bed, Y.(s)
given by Eq. (9). Integration over the bed using the distribution
in Eq. (38) gives

1
_ _ ity 1
Yoo = | omods = e o (44)
where
L —O(s)
fl(xco,l)—/xco 6 exp{ . } ds (45)

Elimination of x. between Eqs. (43) and (44) yields

(Das> _ i, W+ (1 Yeg = 1)

46
A 1/Yc0 — xc0 (46)
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which is the equivalent to Eq. (42) and replaces that equation by
accounting for the particles that have reached complete conver-
sion and are still in the bed.

An alternative equation (equivalent to Eq. (46)) is found by
combination of Egs. (38) and (7) and taking into account Eqs.
(8), (39) and (41) to give

DClS 1 YCO
=== )T 47
Y Ja(xeo T Yoot (47)
where
! —6(s)
f2(xc0, A) =/ exp [] ds (48)
Xc0 A

Once Das, x0 and Yo are given, Eq. (46) or (47) provide one
equation for A (or Dag/A). The distribution pp(x;) can be then
calculated by Eq. (38), and the average conversion in the bed,
Eq. (10), is computed by

, A
rep=1— f1(xeo, 1) 49)
A
From Eqgs. (40) and (41) r., becomes
Dag
Ieb = 1-— Y FO (50)

The overall mass balance on the solids and gas reactant
and the stoichiometry of the reaction link the conversions of
solids and gas. By equalling the rate of disappearance of solids,
rep/M. with the rate of consumption of the gaseous reactant,
(Cin — Cout)toAT/V One obtains

1 Day
Xg=a<1— f) (5)

where « is a dimensionless parameter defined by the stoichio-
metric ratio of the feed rates of the reactant gas and the solids:

o upArcin M. (52)
vFy

Elimination of fj(xco, A) by combination of Eqs. (46) and (49)

enables to relate x¢p and Dag/A:

1 Dag
Xe,b = Xc0 + E — Xc0 1 - I (53)

Eq. (53) establishes clearly the boundary limits of Dag/A which
are obtained for the limiting cases x¢p =0 and 1:

D 1-Y, 1
(55) < (e ) o
A 1 —Yeoxco 1— Yeoxeo

Dag/)\ near zero means complete conversion of solids, whereas
Dag/. close to unity stands for the case of null solid conversion.
In the particular case when all particles enter the bed with x.o =0
and Y9 =1, Dag/A is equal to one minus the solid conversion
that is attained in the bed, that is 1 —x¢p. Thus, with x,0=0
and Y0 =1, Dag/X ranges from O to 1. Elimination of Dag/A by
combination of Egs. (51) and (53) gives a relation between X,

and xc p:

X, — Xe,b — Xc0
7 a1/ Yoo — xc0)

The parameter Dag should be evaluated for emulsion conditions,
i.e. Das=Dag ¢, but the ratio Das/A does not depend on the ref-
erence situation for which the gas conversion is evaluated (see
Eqgs. (40) and (41)). The known parameter is actually Dagin
(evaluated for the inlet conditions), but according to Eq. (16)
Dag (=Dag ) can be derived from Dag jn:

(55)

Das = Das,in’?ph (56)

Hence, npy has to be known to calculate Dag for emulsion con-
ditions. An expression for 7y, results from Eqgs. (18) and (51):

1 Da \1"
nphzlil—NO[(l— k>:| (57)

Egs. (51) and (53) allow the calculation of X, =f(Das/A, «a,
nph) and xcp =f(Das/A). Taking into account Eq. (57) gives
Xy =f(Das/X, a, N,) so the reactor behaviour is governed by three
parameters: Dag/A, o, and N,. N, comes from the fluid dynamics
(Eq. (23)), whereas « is obtained from available inputs (see Eq.
(52)). The inventory of the bed, wy, is known, for instance, from
measurements of pressure drop across the bed (see Section 4.3).
The group Dag/A is obtained from Eq. (46) or (47). To apply
these equations, the functions fi (or f>) defined in Eqs. (45) and
(48) require the value of ®(x.), defined in Eq. (39). Therefore
F(x¢) has to be integrated for all the degrees of conversion in the
FB reactor. To undertake this estimation, a kinetic model should
be established in order to have available the expressions Fj(x;)
and 1p(xc). To sum up: for the estimation of Das/A by Eq. (46) or
(47), a kinetic model should be formulated first and then solved
for the conditions in the reactor.

3.5. Modelling of particle kinetics in NCGSR

For the non-catalytic case the reaction rate of a particle devel-
oped in Section 3.3 has to be expanded to include the effect
of conversion. This leads to the solution of a time-dependent
problem with a moving interface within a particle. The rate of
shrinkage/expansion of a particle’s external surface is difficult
to generalise because it depends on the nature of the NCGSR.
For instance, for gasification reactions, a threshold for the local
conversion has been fixed at the instant when the ash layer of
particle peels off [38,39]. This threshold condition allows theo-
retical computation of the particle’s boundary at any time. The
threshold depends on type of reactor, resistance of ash, and oper-
ating conditions. In a FB, for example, the removal of an ash
layer may be caused by attrition. In contrast, for reactions where
a solid product is formed, the relation between the molar vol-
umes of reactant and product is usually employed, together with
some empirical parameter, to determine the rate of change in vol-
ume (shrinkage or expansion) [17]. In general, empirical input
is needed at some level. Exceptions to this are the well-known
uniform conversion model (UCM) and the sharp interface model
(SIM) as we shall see later on, representing limiting cases. In sit-
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uations where these extreme cases are not valid, general, but still
simple, models could be applied. In the following such a model
will be formulated using Eq. (4) together with an estimate of the
effectiveness factor of the particle 7, (xc).

As in the catalytic case, np(xc) is composed of an internal
and an external effectiveness factor, 7;(x.) and ne(x.). These are
defined for NCGSR in the following way:

n
Cs K, dx./dt
7” = — = 2 B T’ = (58)
¢ (c) Kre ' Fi(xe0)Krs

As seen they depend on conversion. Egs. (32) and (33) still
apply. However, M and Dap. given by Eqgs. (34) and (35) have
to consider the effect of conversion, because k, Lequ, kG and De
depend on it. The change with conversion can be followed by the
variation in reaction rate, Eq. (4), and the change in diffusivity of
the particle by g(x.), a function of the local porosity &, and D¢,
the initial effective diffusivity. An empirical equation for g(x.)
is usually accepted for gas—solid reacting systems [33,40,41]:

g@0=LM%)=<d%» ={1+(1—%)%] (59)
Deo £0 £0

To estimate the change of particle size with x., an additional
relation is required. The shrinkage of a particle during consump-
tion is not included in Fj(x.) that only measures the change of
the internal surface. If a detailed model (integration inside the
particle) is used, it is possible to establish the rate of shrinkage as
shown by Srinivas and Amundson [38] and Morell et al. [39] for
the case of gasification of coal particles. However, here we have
formulated the model in terms of the global particle conversion
X, and the change in size with particle conversion cannot be
calculated. Nevertheless, this information can be provided by a
simple empirical equation:

Lequ(xc) = Lequ,O(l - xc)s (60)

where a judicious choice of the parameter § gives Leqy for any xe.
Only in the limiting kinetic models, such as UCM and SIM, the
assumption of an arbitrary value for § is not necessary: UCM
implies a constant particle size (§=0) and in SIM, §=1/3. In
between these two limiting situations, the more general pro-
gressive conversion model with changes in size and density can
be applied by properly choosing a value of § in the range of
0-1/3.

Now, with the definitions given in Egs. (30) and (33), and with
Eqgs. (4), (59) and (60), the initial value Day;, 0 can be related to
Dapin(xc) and Min o t0 Min(xc) as

Dapin(xc) = Dapin o[ Fi(xc)(1 — x¢)2?] (61)
: 12
Min(xe) = Mino (E("C)) (1= xo) 62)
g(xe)

where a correlation for the external diffusion coefficient kg of
the type of Sh Rella/ 2 was used to derive Eq. (61) [43]. By Egs.
(31),(33),(61) and (62) the desired relationships are determined:

Dape(xc) = Dapin o[ (10" ™" (Fi(xe)(1 — x0)¥2%)] (63)

: 12
My(xc) = Mino | (nphne)™ ™ D" (F(x)) (1 —xc)°
g(xe)

(64)

In conclusion, Egs. (31) and (33) allow calculation of ne
and 7; and so np. The quantities M and Dape, appearing in
these equations, are calculated by Eqs. (63) and (64). From
this treatment it is clear that the dependence of 7, is in the
form

Mp = f('?pha Min,0, Dapin,0, Fi(xc), g(xc), 9) (65)

being the NCGSR version of Eq. (36).

4. Discussion
4.1. Solution for CGSR

The explicit solution for np, found in Eq. (26), i.e.
nph =flDar/Na, np, n), is displayed in Fig. 2 by solid lines.
It can be demonstrated that this solution includes as particu-
lar cases published analytical expressions, such as reported by
[2] for the modified Orcutt model of irreversible reactions with
n=1/2, 1 and 2 (symbols in Fig. 2). The difference between
the solid lines and the symbols is very small and entirely asso-
ciated with Frank-Kamenetskii’s approximation used to derive
Eq. (26) from Eq. (21). In fact, Eq. (20) is equivalent to the
solutions of Orcutt’s model, but the present formulation pro-
vides an additional scheme for simple estimation of diffusion
limitations at the particle scale and for expanding this scheme
to NCGSR. The simplest case (n=1) allows a straightfor-
ward physical interpretation of the solution. In this case the

=
o
=

oq L iiii ) I

0.1 0.5 1 5
DaR,innplNa
Fig. 2. Solution for gas—solid catalytic reactions in an FB drawn for the inter-
phasic effectiveness factor, npy as a function of Dag jnnp/N, for various reaction
orders, n (between 0.25 and 2), according to Eq. (26). (Solid lines represent the
present model, whereas symbol lines are results obtained from Orcutt’s model.)
The particle effectiveness factor n;, is unknown, so this figure must be used in
parallel with Fig. 3 to determine iteratively 1, and nph.
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solution is
Na/DaR Na

N . (66)
1 4+ Na/Dar 1 4+ Na/Dar

Nph =
The group N./Dar expresses the drop in gas concentration
between the entrance and the emulsion. Two factors are respon-
sible for that drop: the consumption of the reactant along the bed
and the resistance between the bubble and emulsion to the trans-
fer of the reactant (bypassing of bubbles). This is the so-called
fluid-dynamic resistance, caused by the multiphase nature of the
bed. Thus, NV, shows if the fluid dynamics at reactor scale inter-
act with kinetics. Limiting values of N, are 0 and 1: full and no
fluid-dynamic interference. If the conditions in the bed lead to
N, <1 (ph ~ 0), the fluid-dynamic effects at reactor scale are
rate limiting, no matter how fast the kinetics are. Obviously, the
gas conversion would be zero in this case. Conversely, if N, ~ 1
and Np/Dagr ~ 1/Dag, the heterogeneous flow pattern associated
with the phases in the bed (the global heterogeneity or hetero-
geneity at reactor scale) loses importance for the reaction (but
the heterogeneity at particle scale, remains to be analysed, as
will be shown below). Substitution of N, =1 in Eq. (66) yields

1 Dagr

= —, Xo=—— 67
1+ Dag & 1 + Dagr ©7)

Tlph
which clearly shows that the gas conversion could be calculated
as a well-mixed reactor. This is a consequence of the assumption
of a well-mixed gas in the emulsion (where the reactions occur).
If we assume, in contrast, plug-flow for the gas in the emulsion,
the solution for the gas conversion would be

Xy = 1 —exp(—Dag) (68)

Fig. 3 shows the graphic solution, including the particle scale,
of np =f(nph, Min,0, Dapin, n) given in Eq. (36). The solution

HIREREL H
Vo (n-1)nz
{1 Dag =0

(o)< ) S T S S

4 (r-1)/n_.
Dapmnph < T

H ook
0.2 fromemere e 2
01 s
0 i i i i I
0.1 0.5 1 5 10
(n-1)/2n
|Vlinrlph

Fig. 3. Solution for gas—solid catalytic reactions in an FB (Eq. (36)) showing
the particle effectiveness factor, 7, as a function of the parameters: Dapin, Min
and n, as well as the interphasic effectiveness factor nyp, grouped into two main
dimensionless parameters: Minf)ph(" =Di2n gpnq Dapin nph("’l)/ " The lines are con-
stant Dapmnph("*l)/”. The interphasic effectiveness factor, 7 is unknown, so
this figure must be used in parallel with Fig. 2 to determine iteratively n, and

Mph-

allows determination of the external and internal effectiveness
factors 7. and n; separately and so to obtain 7;,. npp, is coupled to
1p, and the general case, when diffusion in the particle is of con-
cern, has to be solved iteratively. This is the reason why 7y, is
included in Fig. 3. In the case of first-order kinetics with respect
to the gaseous reactant, the simple relations Dape = Dayin, and
M. = Mj, hold, no matter the concentration drop between inlet
and emulsion, i.e. independent of 77,p. In the case of CGSR where
nis not equal to unity, it is best to start by solving nph, assuming,
for instance, np ~ 1 in Eq. (26) (5, has to be known to calculate
Dag). If the calculated value of 7, is not unity, the procedure is
repeated until convergence. In summary, Figs. 2 and 3 are the
graphical solution of Egs. (26), (31) and (32), allowing deter-
mination of gas conversion for CGSR in FB. For the case of
NCGSR in FB, the procedure is more complex, as discussed
below.

4.2. Solution for NCGSR

The strategy for a solution procedure is presented in Fig. 4.
The figure first lists typical inputs required (bed geometry, oper-
ating conditions, etc.). After the direct inputs, some calculations
yield the governing parameters N, o, Dagjn, Dapino and Mip .
N, is obtained from the fluid-dynamic parameters NTU and B.
NTU and B are calculated by various correlations from a bib-
liography selected according to the design of an FB and the

Imputs

Direct input

— Bed and distributor geometry

— Operational parameters: T}, gas stream (u,, c;y ), solid feed ( /1, (x,, ¥.,)), total bed
inventory (wy) and from Ly, At (pressure drop across the bed)

— Stoichiometry of reaction (v)

— Gas-solid kinetics: K, F;(x,)

— Solid properties: solid reactant (d.o, peo), inert (dk, ps), function of effective
diffusivity behaviour: g (X,)

Fluid-dynamic data (easy calculations from proper correlations):

— From fluid-dynamic correlations: ttmg, &ny ks Lt

— NTU (Eq. 24 ) and B (Eq. 25)

Computation of governing parameters:

— N, from Eq.(23)

— a from Eq.(52)

— Day;, from Eq.(40) with K, evaluated at inlet conditions

— Dagine from Eq.(61) with ¢=c;, and x;=x

— M from Eq.(62) with ¢=¢;, and x=x

Procedure of solution
Assume
Compute for any x.
Day and M, from Eq.(63) and Eq.(64)
np(x): 1(x) = o t; e with Eq (31) and #; with Eq. (32))
Compute
(Da, /&) from (Eq. 46 or Eq. 47) (fi(xc0,4) (Eq. 45) or fa(xe0,4) (Eq. 48))
X, from Eq. (51)
Check #pi from Eq. (57)

Main Qutput
X, from Eq. (18), x. from Eq. (55)

Fig. 4. Method of solution for NCGSR showing inputs, solution procedure and
main outputs (gas and solid conversion). References of the equations neces-
sary for the evaluation. Three kinds of input are defined: those that can be
determined directly from data (kinetics, FB hardware and operating conditions),
inputs necessary for the model that can be calculated from proper fluid-dynamic
correlations (these need to be selected from literature), and the inputs for direct
introduction into the model: Ny, o, Dasin, Dapin,0, and Minp.
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mode of operation. Input data needed for fluid-dynamic spec-
ification are based on the geometry of the bed and distributor
together with the properties of the gas and the solids in the bed.
The solution procedure has one loop because the concentra-
tion in the emulsion should be estimated in order to calculate
np(xc). Thus, npy is determined by iteration. First, npy is assumed
and np(x.) is determined through the kinetic particle model for
any xc. Then the population balance for the solid reactant is
solved to estimate Das/A (Eq. (46) or (47)), i.e. the solution
of Das/\=f(npn, Min0, Dapinpo; Fi(xc), g(xc), 8). Once Das/A
has been found, Eq. (57) yields a new estimation of nph. The
procedure is repeated until npn converges. Once npn and Dag/A
have been established, X, and x., are calculated through Egs.
(18) and (53). In summary, X, and xcp =f(Das/A, o, N,) and
Dag/}. = f(nph, Min0, Dapin,0; Fi(xc), g(xc), 8), so that, in general,
X, and xc p =flot, Na, Min o, Dapin,0; Fi(xc), g(xc), 8). Obviously,
the scheme of solution described above is not the only one pos-
sible when facing a NCGSR in an FB. In fact, it represents just a
typical problem of analysis where the gas and solid conversion
are the main required outputs. Other situations with different
input data may exist, for example: the gas conversion is known,
for instance, through measurement of the O, concentration in
the flue gas from a FB combustor; then, the scheme of solution
given above needs to be reconsidered conveniently according to
this input.

Fig. 5 illustrates the diffusion effects within single particles,
and their variation with conversion for the traditional kinetic
model (TM, Table 1) F;(x.)=(1 — x)E. In particular, the figure

0.9 | UCM=(0.01,0.1,0,1)
08
07}
(0.1,1,0,1)
06 \
o (1,3,1/8,1/2)
0.5 * H
(1,1,1/8,1/2)
0.4} ~ 1
{1,5,1/6,1/2)
03} i
0.2 )
04l |Notation (Min’O,Dapin‘o,ﬁ.é)‘ SIM=(10,5,1/3,2/3)| |
0 DS < T L
0 0.2 0.4 0.6 0.8 1

X¢

Fig. 5. Particle effectiveness factor, 1, vs. conversion, x. for various values of
the two main governing parameters at particle scale: My o and Dapin0, and the
parameters § (shrinking parameter) and & (exponent of the traditional model).
The brackets includes Min 0, Dapino, 8, and & used for the evaluation of the
corresponding curve. All curves have been drawn for n= 1 and npn = 1, using the
traditional model (TM), i.e. Fi(x¢) = (1 — x¢ ). The g(x) function (expressing the
changes in effective diffusivity with conversion) used in all cases is given by Eq.
(59) with k =2. Two extreme cases of mass transport limitations are identified:
extremely high limitations represented by the sharp interface model (SIM) and
null limitations represented by uniform conversion model (UCM). These cases
correspond to SIM = (Min 0 > 1, Dapino = any, as long as Mino > (Dapin’o)llz,
8=1/3,£=2/3) and UCM = (Min 0 K 1, Dapinp < 1,8=0,§=1).

displays the solution of 7, =f(x.) for various values of Mj, 0,
Daypin, § and &, for n=1, npp =1, and g(x.) given by Eq. (59)
with k = 2. Two extreme cases of diffusion effects are represented
by the sharp interface model (SIM) (also called shrinking par-
ticle model or shrinking core exposed model) and the uniform
conversion model. SIM is valid when the intraparticle resistance
controls the overall reaction rate, so that for Mi, > 1 and for
Dayp o taking any value (as long as: M12n,0 > (Dapin,o)” 2). This
latter comes from the condition Biip o> 1 where Bij, is the
mass Biot number, Bijy 0 = Mizn,o/Dapin,o- The UCM is valid for
kinetic control cases, for Mi, 0 < 1 and Dapin < 1. As shown,
when a particle is described by the UCM, n,, is close to 1 for
the whole range of x.. In contrast, under SIM most of the time
1p is close to zero and the overall rate of reaction is limited by
intraparticle diffusion. The solution for n, is simpler in these
two limiting cases: diffusion does not play any role for UCM
(np — 1), whereas 1, — 0 for SIM being roughly independent
of x.. Intermediate cases are drawn in Fig. 5 by varying Mjj o,
Daypin o as well as the shrinkage parameter (§) and the kinetic
parameters characterising F;(x.) (in this case values of &, in the
TM). For SIM § = 1/3, whereas for UCM § =0. In general, the
higher the values of Mi, ¢ and Dapin,0, the higher the mass trans-
port effects and, consequently, sharper profiles of 1, versus x¢
are produced.

The solution for np, by Eq. (57) is displayed in Fig. 6.
Once Das/A and N« are established, npp is known. The curve
Naa=1 corresponds to the conversion X, =(1 — Das/A)/ec and
nph =(Das/1)". Fig. 6 allows visualization of two interesting
limiting cases:

e Limiting case (a): In the region N,a<1 the curves
Naa=constant reach the horizontal axis (n,n,=0) at a
(Dag/))erit with a value equal to 1— N,«, which cor-
responds also to a minimum threshold for A given by
Amin =Das/(1 — Nyor). An FB running with a given N« and
a Dag/)\ smaller than 1 — N« is characterised by np,p — 0
and so by a solution given by Xy =N, and xcp =xc0 +Nact

SRR ISR
1

0 0.1 02 03 04 05 06 07 08 09 1
Da /2

Fig. 6. Plot of interphasic effectiveness factor npp, as a function of Day/A taking
various values of N, (Eq. (57)). Observe that the dependence of the order of

reaction, 7 is included in the variable at the ordinate: ’7:)1/1"'
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Fig.7. Das/A as a function of Daginnph for various values of Dapin o nph(”’l)/” and Min 0(7e nph)(”’l)/ 21 (all simulations have been run for TM with § = 1/6 and & = 1/2).
The interphasic effectiveness factor, np is unknown so this figure must be used with Fig. 6 to determine iteratively 5, and nph.

(1/Yc0 — xc0) (for instance, for the case Y.p=1 and x.=0
this gives xc p = Na). In this region the feasibility of solution
for Dag/\ ranges from O to 1 — N,, however, the actual gas
and solid conversion does not depend upon the actual value
of Dag/A. This case is, thus, dominated by the fluid-dynamic
behaviour of the bed, N,, and the supply of gas relative to the
solid, «. This scenario only exists in the region Ny <1 and,
thus, for values of @ < 1 (recall N, < 1). This case is said to be
limited by the supply of gaseous reactant to the reacting par-
ticles. The conversion of solid is dictated by relative amount
of gas entering the reactor («), available for the particles in
the emulsion (V,), but not by kinetics of the gas—solid reac-
tion or the solid reactant distribution in the bed (Dags/A). A
population balance does not have to be solved in this case.

e Limiting case (b): The other limiting situation in the
region N,a>1 in Fig. 6 is in the points where
the lines of N,x=constant reach the ordinate. Here,
Dag/)=1/(1 — Ycoxc0) (for the simplest case Y.o=1 and
xc0=0) the solid conversion is complete, xcp =1, Xy =1/a,
and npp = (1 — 1/(N,a))". This is even a simpler case than (a)
because no matter what the conditions in the bed are, the solid
is completely converted. Gas conversion is always smaller
than unity, because X, =1/, and o >1 (recall Naa>1 and
N, <.

It is interesting to further analyse the limiting behaviour of
the reactor with respect to @. As o <« 1 the solids are in large
excess and the system approaches the behaviour of a catalytic
reactor. When this occurs, the two limiting cases identified
above for CGSR (Section 4.1) apply. The parameters at reac-
tor scale N,, and Dar dominate the reactor behaviour. If the
gas, in contrast, is in large excess (o> 1) Xg — 0 and nph — 1
as Nph = (1 — 1/Naa)". This is the case where the differences in
gas concentration between the emulsion and inlet stream can be

neglected, and the kinetics at particle level determines the solid
conversion. The cases discussed above for single particles hold
(Section 3.5).

The computational scheme in Fig. 4, illustrates how Dag/A
depends on Mj, 0, Daypin 0, and n, and in addition, on the form
of Fj(x.) and g(x.). Fig. 7 shows this dependence of Dag/A on
Min0, Dapinp, and n for 6=1/6 and & =1/2. The figure allows
calculation of Das/A from input data, provided that np, has been
previously assumed. Therefore, this figure represents the internal
iterative loop for np, described in Fig. 4. To enter at the horizontal
axis in Fig. 7, npp has to be assumed. Once Das/A is obtained
from Fig. 7, npn is calculated using Fig. 6. The iterative procedure
is continued using Figs. 6 and 7 until convergence of npn. The
solution procedure for the general problem is then reduced to the
use of Figs. 6 and 7, provided that the figures have been based
on the proper kinetic model.

Figs. 6 and 7 are the NCGSR equivalents to Figs. 2 and 3. The
main difference is that for CGSR, np, does notdepend on x, and if
only one representative 7 is to be calculated, an average particle
size is taken as a reference. In the NCGSR case, the change of
properties and reaction rates with x, makes it necessary to follow
the properties at different x. and to integrate the contribution of
all particles. This information is contained in one parameter:
Dag/A. In NCGSR the solution is not useful as a function of
Dag, since, as shown in Eq. (22), this parameter depends on other
parameters, which makes the solution difficult. Fig. 8 shows the
solution of Dag as a function of «, Dag/A, N,, and n.

4.3. Simple approximate solution for NCGSR

The procedure above considers a general distribution of par-
ticle conversion in the bed. Therefore the general solution is
given in terms of Dag/A in Eq. (46) (or Eq. (47)). In some cases
a simpler, approximate, solution can be derived, neglecting the
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role of the distribution of conversion in the bed. To assess this
approximation, a factor ¥ is formulated, defined as the ratio of
the average reactivity in the bed to the reactivity evaluated at the
average conversion:

f‘v’xC eV wbR(Xc)Pb(Xc) dxc B Teb
wp R(xc b) wp R(xc b)

Taking into account Egs. (40), (41) and (46), Eq. (69) can be
expressed as

‘(ﬂ:

(69)

Xe,b — Xc0

V= FGen)

(70)
When ¢ ~ 1, the distribution of conversion of the particles has
a small impact on the bed reactivity, and the tedious population
balance is not necessary: the solution is considerably simplified.
Application of the approximation ¥ =1 to Eq. (70) yields

_ Xe,b — Xe0
F(xc,p)

Eq. (71) allows direct calculation of the unknown A. Substitution
of Eq. (71) into Eq. (53) yields an equation for evaluation of x. ;,
(no prior calculation of Dag/A is needed):

(1/Yeo — xc,b)(xc,b — Xc0) =D ( 1 )
=Dag | ————
F(xc,b)

Gas conversion is then calculated by Eq. (55). The simplest sit-
uation is represented by UCM without diffusional effects, i.e.
F(xcp)=(1 —xcp), giving the solution x¢p=Das for the case
Yo =1 and x,9 =0. The assessment of the simplification =1
has been investigated for a general NCGSR by Heesink et al.

(71)

(72)
Yeo — xco

[18] and Caram and Amundson [10]. Heesink et al. elaborated a
factor equivalent to i and applied it to FB reactor modelling of
sulphur capture by precalcined limestone. Caram and Amundson
studied the effect of i for SCM with and without deactiva-
tion (according to Johnson’s model [27] for char gasification).
In general, ¥ depends on F(x.), but as a rule of thumb, the
closer xcp is to unity, the more i deviates from unity. How-
ever, for UCM, i.e. F(x;)=(1 —x¢), ¥ =1 holds, no matter the
value of x . To see how much x.p, has to be below unity, Fig. 9
presents the solution of v versus x., curves for various F;(x.)
(see Table 1) in the case of gasification reactions. As seen, dif-
ferent kinetic models behave differently, but, broadly speaking,
to model FB reactors working with an overall conversion higher
than, say, 0.3-0.4 above the entrance value xy, a population
balance should be included in the case of one stage bed. For
multistage bed cases, the last stage(s) xc p—xco can take values
below 0.3 and this simple case can be assumed. In a general case
where there are diffusion effects within the reacting particles,
np(xc) has to be accounted for, and the curves should be corrected
accordingly. This procedure still provides great computational
time saving, because it avoids the solution of Eq. (46) (or Eq.

47)).

4.3.1. Examples of application for NCGSR

4.3.1.1. Example 1: gasification of char with CO3 in a lab-scale
FB. A lab-scale FB gasifier is fed with char using N>,—CO»
gas mixtures as gasification agent. This example is chosen to
show how to use the method to estimate gas and solid conver-
sion and how to scale-up the kinetics from lab-scale, consistent
with the approach derived for single particle behaviour. When
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treating char reactivity to simulate conversion in an FB, it is
convenient to generate the char under conditions that are similar
to those of the full-scale equipment. This is because the char
reactivity could depend on the conditions under which the fuel
particles were prepared, especially heating rate and tempera-
ture. Gomez-Barea et al. [42] determined the reactivity of an
orujillo char with CO» in a batchwise fed lab-scale FB reactor.
Precautions were taken to avoid fluid-dynamics effects, such as
bypassing of gas through large bubbles, and to maintain the
conversion in the reactor low enough. Difficulties related to
entrainment of solids when feeding powdery char at the top
of the reactor made the authors use a char particle size of sev-
eral mm. Therefore, they first determined mass transport effects
[43]. The rate of consumption of a char particle was measured
for various sizes, CO, concentration, temperature, and initial
char batch. From the measurements, they calculated the evo-
lution of X,, dx./dt and x. with time. To determine n,(xc), K;
and Fj(x.), an empirical equation (Eq. (60)) was assumed to
describe the evolution of particle size with conversion during
the tests.

The first column of Table 2 provides data for the simulation
of the lab-scale BFB. The objective of this simulation is to anal-
yse the behaviour of the FB reactor in a continuous mode to
retrofit the facility for steady-state tests. UCM (Fi(x.) =(1 — x¢)

and § =0) was chosen as kinetic model to represent the single
particle behaviour. The governing parameters at reactor scale,
o, Ny, and Dag iy, can be directly calculated. At char parti-
cle scale, the Thiele module M, o, and the Damkoéhler number
Day;n o can be evaluated for inlet conditions. These five groups
are listed in Table 2. From these parameters Das/A can eas-
ily be calculated or read from Figs. 6 and 7 by iteration with
nph. Once these values have converged, X,; and x. are calcu-
lated through Egs. (51) and (53). These values are presented at
the bottom part of the left-hand column of Table 2. The struc-
ture of the calculation given in Table 2 is shown in Fig. 4.
Any other example can be solved in a similar way. It is worth
noting that the solution obtained is one of the limiting cases
discussed in Fig. 6 (case (a)). In fact, the value of (Das/}) is
nearly (Das/A)crit and npn — 0, Xg — 1. Finally, Fi(x.) and K,
and 8, determined in [43] make the approach consistent, because
the same § was used as in that work to determine the kinetics
(in fact, for estimation of np(x.) to account for the mass trans-
port effects). § mainly depends on the type of contactor and the
temperature, and it can be used under various physical condi-
tions (particle size, continuous feeding, initial bed batch, etc.).
In other words, this approach makes the particle model useful
for reactor simulations, consistent with the kinetics obtained at
lab-scale.
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Examples of application: char gasification with CO; in a bench-scale bubbling FB gasifiers [42] and zinc sulphide roasting in a large-scale bubbling FB [2]

Units CO;-char gasification (C+CO, — 2CO) Zinc roaster (ZnS + (3/2)0; — ZnO + S0O;)
(lab-scale BFB) [42] (full-scale BFB) [2]
Inputs
Direct inputs
D, m 2.66 x 1072 6.38
H m 0.165 n.a.
Ty K 1173 1273
Umf ms~! 0.19 0.048
uo ms~! 0.8 0.78
Cin kmol m—3 2.07 x 1073 2.075 x 1073
Fo kgs~! 1.4 %1073 248
Xc0 - 0 0
Yeo - 0.85 1
wh kg 2.5 %1072 30,000 (~ wrp)
v - 1 32
K, s 23 %1073 7.35%x 1073
n - 0.4 1
Fi(xe) - (1 —xc) (1 —x)*3
s - 0 1/3
deo m 2.1x1073 6x107°
Peo kgm™3 800 4100
dsi kgm™3 471 x 1074 6x 1073
Dsi m 2650 3420
De m?s~! 7.0 x 1076 9.0 x 107
8(xe) - (1 —x)*3 1
Fluid-dynamic parameters
NTU - 7 1.40
B - 0.76 0.99
Governing parameters
N, - 0.99 0.76
o - 0.2 1.35
Dagpn - 3.78 88.91
Mino - 2.0x 1072 >1
Dayin - <1.0x 1073 «l
Solution
ph - [—0] 0.025
Dag/\ - 0.79 [<0.80 = (Dag/\)eric] 4.05 x 1075 [—>0]
Dag - >1 29.08
X, - 0.99 [—>N,] 0.74 [ (1/)]
Xeb - 0.23 [ aN,/Y] 0.99

4.3.1.2. Example 2: conversion in an industrial scale FB zinc
roaster. The second working example is the simulation of a
zinc roaster. Details of operating conditions, stoichiometry,
and geometrical parameters relevant to the fluid dynamics are
presented in the last column of Table 2. The input data are
directly taken from [2]. As shown in the table, the applica-
tion of the method developed here is in good agreement with
the classical method presented by Grace [2]. Moreover, the
analysis shows that the solution is one of the limiting cases
established in Fig. 6 (case (b)): solutions where X, — 1/a for
the region of N,or>1. This example is a rather “simple” one,
where n =1 and the shrinking particle model describes the parti-
cle behaviour. In fact, an analytical solution for &(x;) can be
derived for this case. The procedure developed here, can be
applied, however, with any nth-order kinetics with respect to
the gas reactant and any empirical law for the conversion of the
solids.

4.4. Extension of the model

The assumption of isothermicity may be valid for some sys-
tems but violated by others. Thermal gradients between phases
are not expected to arise because of the good mixing generated
by bubbles and the buffer role of the bed. In contrast, thermal
limitations at the particle scale can be important in some cases.
On the one hand, FB operations with coarse solid reactants hav-
ing high reactivity and large heat of reaction are inclined to be
thermally limited. In processes, such as FB combustion, tem-
perature gradients within biomass/coal particles and/or in the
boundary layer have been observed. Similarly, flash-pyrolysis
of biomass and thermal decomposition of mineral rocks in FB
are often thermally controlled. On the other hand, in processes
like gasification of char, zinc roasting, sulphide hydrogenation
of heavy metals and other NGGSR [17,23], thermal gradients
are usually insignificant at both scales, so an isothermal assump-
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tion is often made. If thermal effects should be considered or not
depends largely on the type of reaction, but also, on the oper-
ation conditions, the latter making it very difficult to establish
general guidelines for the applicability of the model. Assess-
ment of the presence of these potential thermal gradients prior
to application of the model is, therefore, recommended. This
can be made by estimation of the thermal Biot number and the
maximum thermal gradient between the emulsion and particle
from a heat balance over a reacting particle.

Non-isothermal analysis at a particle scale, in general,
requires two further parameters to account for the thermal sen-
sitivity of the chemical reactions (the Arrhenius parameter) and
to quantify the thermal effects relative to the heat conduction
(the Prater number). If, in addition, the difference between the
phases is important, further parameters have to be considered
by formulating an energy balance over the reactor. To account
for all these phenomena in a generalised formulation such as
the one presented, complicates the presentation and makes less
meaningful a comprehensive analysis of governing parameters.

When more than one reaction occurs, or when the gas reac-
tant and the product gas species further combine homogeneously
or/and react with other compounds in the gas mixture, some
extensions have to be made. An example is given to illus-
trate how reasonable simplifications can lead to application of
the method. Let us consider, for instance, simultaneous CO,
and H,O gasification of char generated after devolatilisation of
biomass. The relative amount of H,O and CO; depends on pre-
vious drying, devolatilisation, and combustion processes. These
processes occur at much higher rate than the gasification of the
char, and so they can be calculated uncoupled to char gasifica-
tion. Char reduction processes can be simplified by considering
that HO and CO; and H; and CO are lumped into the same
pseudo-components, R and P, respectively. As a result, the only
heterogeneous reaction to be considered is char + R — P. This
reaction is assumed to occur in the emulsion phase where most
char particles are found. This scheme is justified by the similar
stoichiometry of char-CO; and char-H,O and by the commonly
assumed equilibrium of the WGSR (water—gas shift reaction).
The relative concentrations of H,O and CO, are adjusted to
the local thermal environment around the particles, because the
WGSR is more rapid. The method of this work has been applied
to such a case [44], giving close agreement with results from
advanced models, shortening considerable the computations,
and most importantly, reducing the input data needed for the
calculations.

In the method wy(= w¢ + wa) has been considered known.
However, when there is inert material in the bed, wipert, this can
be calculated because a pressure measurement provides the total
amount of bed, wty, and hence, also the amount of inert material
(wTp = Wp + Winert)- Winert, can be calculated once the manner
of operation of the FB system is specified. As an example, let
us consider an FB operating with a constant solids inventory: a
continuous drainage of bed material from the system is made,
and so, to keep the bed material constant, a continuous make-
up of inert material is needed. At steady state, a simple mass
balance over the inert material yields an additional equation for
Winert- In general, the composition of the bed has to be known for

the calculation of wipert, SO this equation is coupled to the main
problem, because to solve the new equation, the composition of
the bed has to be known, i.e. Y.p. Therefore, Y. is assumed,
Winert 18 calculated, and then, also wy,. If the new Y, , differs from
the assumed value, a new wjpert is estimated and the calculation
is repeated until convergence. To sum up, the consideration of
inert material introduces a second loop, which has to be solved
in parallel with the main problem. In practise, two iterations are
often enough to attain the solution because the main problem is
not sensitive to this loop.

5. Summary and conclusions

A methodology is proposed for evaluation of general
gas—solid reactions in isothermal FB. A model is developed in
two stages. First, amethod for evaluation of gas conversion is for-
mulated by applying the two-phase theory of fluidisation on FB
catalytic reactors, in which only gas conversion is considered.
A condensed formulation is given to calculate gas conversion
as a function of the governing parameters. In a second stage,
the model is extended to account for non-catalytic reactions by
incorporating variation of particle properties and reaction rate
with conversion, as well as the distribution of the conversion of
reacting particles in the bed. Three groups govern the solid and
gas conversion in the reactor: (1) the ratio of reactant gas and
solid feed flowrates, «; (2) the concentration efficiency in the
entire bed, N,; and (3) Dag/A, being an indication of the solid
conversion. The group Dag/A is obtained from a population bal-
ance taking into account the overall contribution of all reacting
particles in the bed. A simplified kinetic model for a single parti-
cle is developed to characterise the governing parameters at the
particle scale. Besides the intrinsic kinetics, two parameters are
identified, quantifying the diffusion effects at the particle scale:
a generalised Thiele module M;;, o, and a Damkohler number at
a particle scale Day;y o, both taking zero conversion and gas inlet
conversion as reference states making these parameters known
quantities. Simplification is possible for limiting values of the
three principal reactor parameters («, Ny, and Dag/)). The sim-
plest case for NCGSR neglects the role of the distribution of
conversion in the bed and allows obtaining a rapid solution for
any kinetics. Examples confirmed the good results of the method.
Moreover, the selection of examples allowed identification of
the limiting solution derived. Discussion is also included on the
application of the model to industrial FB processes, focussing
on the understanding of the model limitations in order to pro-
vide guidelines for extensions. This work complements existing
generalised FB reactor models for catalytic gas—solid reactions,
therefore, allowing similar generalised analysis for non-catalytic
gas—solid reactions.
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Appendix A. Frank-Kamenetskii’s approximation

Frank-Kamenetskii [45] proposed an explicit solution for the
variable y in a general equation of the form
y—(1—-—puy)"=0 with 0<n<1 (A.1)

where 1 is a constant of any value in the interval (0-2.7). This
solution is

, 1
min (1, 7)
"
Y=Y A =+ 1 4
me)"™ — 1+ 1+ 2n)/" + 117"

withn =0

(A.2)

withO <n < 1

withl < n < 2.7

Egs. (21) and (29) can be expressed in the form of Eq. (A.1)
where y is npp Or 7e, and the corresponding values of u are
Dagr/N, and Dagrnj. This leads to explicit solutions given by
Eqgs. (26) and (31) for npy and 7e, respectively.

Appendix B. Formulation of the population balance:
derivation of Eq. (38)

For bed mass and flowrate of solids, as shown in Fig. 1b, an
overall steady-state mass balance in the bed gives

Fo=rep+ Fi (B.1)

repis definedin Eq. (7). Now, by making a balance on conversion
of the particles between x. and x. +dx. we have

K, d(F(xc) po(xc))

= Fopo(xe) — Fipi(xe)
dx.

Wh
—wp R(xe) po(xc) (B.2)

In a well mixed bed py,(xc) =p1(xc). Solving for the distribu-
tion of conversion in the bed py(x;) yields [10]:

dpb(xc)+ dIn F(xc) 1 1 xe)
X,
dre dx, W) | 1) Ye —xe | PO
1
_ po(xc) (B.3)
Dag F(x.)

where Dag and A are dimensionless parameters defined in Egs.
(40)and (41). Eq. (B.3) is integrated using the condition py,(0) =0
to obtain

(xo) = L 1/Yeo — xc /XC <ex |:_@(S):| Po(s) > ds
PP = e Fo Jo \TPLT A ] 1Y —s
(B.4)

Assuming that all the particles enter with the same conversion
X0, the feed distribution is po(xc) = 8(x. — xc0) and Eq. (B.4) is
simplified to give Eq. (38).
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